Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 13: 1063679, 2022.
Article in English | MEDLINE | ID: covidwho-2198906

ABSTRACT

Most if not all vaccine candidates developed to combat COVID-19 due to SARS-CoV-2 infection are administered parenterally. As SARS-CoV-2 is transmitted through infectious respiratory fluids, vaccine-induced mucosal immunity could provide an important contribution to control this pandemic. ChAd-SARS-CoV-2-S (BBV154), a replication-defective chimpanzee adenovirus (ChAd)-vectored intranasal (IN) COVID-19 vaccine candidate, encodes a prefusion-stabilized version of the SARS-CoV-2 spike protein containing two proline substitutions in the S2 subunit. We performed preclinical evaluations of BBV154 in mice, rats, hamsters and rabbits. Repeated dose toxicity studies presented excellent safety profiles in terms of pathology and biochemical analysis. IN administration of BBV154 elicited robust mucosal and systemic humoral immune responses coupled with Th1 cell-mediated immune responses. BBV154 IN vaccination also elicited potent variant (omicron) cross neutralization antibodies. Assessment of anti-vector (ChAd36) neutralizing antibodies following repeated doses of BBV154 IN administration showed insignificant titers of ChAd36 neutralizing antibodies. However, the immune sera derived from the same animals displayed significantly higher levels of SARS-CoV-2 virus neutralization (p<0.003). We also evaluated the safety and immunogenicity of heterologous prime-boost vaccination with intramuscular (IM) COVAXIN-prime followed by BBV154 IN administration. COVAXIN priming followed by BBV154 IN-booster showed an acceptable reactogenicity profile comparable to the homologous COVAXIN/COVAXIN or BBV154/BBV154 vaccination model. Heterologous vaccination of COVAXIN-prime and BBV154 booster also elicited superior (p<0.005) and cross variant (omicron) protective immune responses (p<0.013) compared with the homologous COVAXIN/COVAXIN schedule. BBV154 has successfully completed both homologous and heterologous combination schedules of human phase 3 clinical trials and received the restricted emergency use approval (in those aged above 18 years) from the Drugs Controller General of India (DCGI).


Subject(s)
Adenoviruses, Simian , COVID-19 , Cricetinae , Humans , Animals , Mice , Rabbits , Rats , Aged , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing
2.
Sci Rep ; 12(1): 18233, 2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-2096801

ABSTRACT

Vegetation fires are common in South/Southeast Asian (SA/SEA) countries. However, very few studies focused on vegetation fires and the changes during the COVID as compared to pre-pandemic. This study fills an information gap and reports total fire incidences, total burnt area, type of vegetation burnt, and total particulate matter emission variations in SA/SEA during COVID-2020 and pre-pandemic (2012-2019). Results from the short-term 2020-COVID versus 2019-non-COVID year showed a decline in fire counts varying from - 2.88 to 79.43% in S/SEA. The exceptions in South Asia include Afghanistan and Sri Lanka, with a 152% and 4.9% increase, and Cambodia and Myanmar in Southeast Asia, with an 11.1% and 8.5% increase in fire counts in the 2020-COVID year. The burnt area decline for 2020 compared to 2019 varied from - 0.8% to 92% for South/Southeast Asian countries, with most burning in agricultural landscapes than forests. Several patches in S/SEA showed a decrease in fires for the 2020 pandemic year compared to long term 2012-2020 pre-pandemic record, with Z scores greater or less than two denoting statistical significance. However, on a country scale, the results were not statistically significant in both S/SEA, with Z scores ranging from - 0.24 to - 1, although most countries experienced a decrease in fire counts. The associated mean TPM emissions declined from ~ 2.31 Tg (0.73stdev) during 2012-2019 to 2.0 (0.65stdev)Tg in 2020 in South Asia and 6.83 (0.70stdev)Tg during 2012-2019 to 5.71 (0.69 stdev)Tg in 2020 for South East Asian countries. The study highlights variations in fires and emissions useful for fire management and mitigation.


Subject(s)
COVID-19 , Fires , Humans , Pandemics , COVID-19/epidemiology , Forests , Asia, Southeastern/epidemiology
3.
iScience ; 25(10): 105178, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2041842

ABSTRACT

The immunity acquired after natural infection or vaccinations against SARS-CoV-2 tend to wane with time. Here, we compared the protective efficacy of COVAXIN® following two- and three-dose immunizations against the Delta variant and also studied the efficacy of COVAXIN® against Omicron variants in a Syrian hamster model. Despite the comparable neutralizing antibody response against the homologous vaccine strain in both the two-dose and three-dose immunized groups, considerable reduction in the lung disease severity was observed in the 3 dose immunized group after Delta variant challenge. In the challenge study using the Omicron variants, i.e., BA.1.1 and BA.2, lesser virus shedding, lung viral load and lung disease severity were observed in the immunized groups. The present study shows that administration of COVAXIN® booster dose will enhance the vaccine effectiveness against the Delta variant infection and give protection against the BA.1.1 and BA.2 variants.

4.
Sci Rep ; 12(1): 12038, 2022 07 14.
Article in English | MEDLINE | ID: covidwho-1931492

ABSTRACT

This is a comprehensive report on immunogenicity of COVAXIN® booster dose against ancestral and Variants of Concern (VOCs) up to 12 months. It is well known that neutralizing antibodies induced by COVID-19 vaccines wane within 6 months of vaccination leading to questions on the effectiveness of two-dose vaccination against breakthrough infections. Therefore, we assessed the persistence of immunogenicity up to 6 months after a two or three-dose with BBV152 and the safety of a booster dose in an ongoing phase 2, double-blind, randomized controlled trial (ClinicalTrials.gov: NCT04471519). We report persistence of humoral and cell mediated immunity up to 12 months of vaccination, despite decline in the magnitude of antibody titers. Administration of a third dose of BBV152 increased neutralization titers against both homologous (D614G) and heterologous strains (Alpha, Beta, Delta, Delta Plus and Omicron) with a slight increase in B cell memory responses. Thus, seronversion rate remain high in boosted recipients compared to non-booster, even after 6 months, post third dose against variants. No serious adverse events observed, except pain at the injection site, itching and redness. Hence, these results indicate that a booster dose of BBV152 is safe and necessary to ensure persistent immunity to minimize breakthrough infections of COVID-19, due to newly emerging variants.Trial registration: Registered with the Clinical Trials Registry (India) No. CTRI/2021/04/032942, dated 19/04/2021 and on Clinicaltrials.gov: NCT04471519.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , SARS-CoV-2 , Vaccination , Vaccines, Inactivated
5.
Lancet Infect Dis ; 22(9): 1303-1312, 2022 09.
Article in English | MEDLINE | ID: covidwho-1895522

ABSTRACT

BACKGROUND: Despite having milder symptoms than adults, children are still susceptible to and can transmit SARS-CoV-2. Vaccination across all age groups is therefore necessary to curtail the pandemic. Among the available COVID-19 vaccine platforms, an inactivated vaccine platform has the advantage of excellent safety profile across all age groups; hence, we conducted an age de-escalation study to assess the safety, reactogenicity, and immunogenicity of an inactivated COVID-19 vaccine, BBV152 (COVAXIN; Bharat Biotech International, Hyderabad, India), in children aged 2-18 years. METHODS: In this phase 2/3 open-label, non-randomised, multicentre study done in six hospitals in India, healthy children (male or female) aged 2-18 years were eligible for inclusion into the study. Children who had positive SARS-CoV-2 nucleic acid and serology tests at baseline, or any history of previous SARS-CoV-2 infection, or with known immunosuppressive condition were excluded. Children were sequentially enrolled into one of three groups (>12 to ≤18 years [group 1], >6 to 12 years [group 2], or ≥2 to 6 years [group 3]) and administered with adult formulation of BBV152 as two 0·5 mL intramuscular doses on days 0 and 28. Co-primary endpoints were solicited adverse events for 7 days post-vaccination and neutralising antibody titres on day 56, 28 days after the second dose. Immunogenicity endpoints were compared with Biodefense and Emerging Infections, Research Resources Repository (BEI) reference serum samples and from adults who received two doses of BBV152 in the same schedule in a previously reported phase 2 study. The trial is registered with the Clinical Trials Registry, India (CTRI/2021/05/033752) and ClinicalTrials.gov (NCT04918797). FINDINGS: From May 27, 2021, to July 10, 2021, we enrolled 526 children sequentially into groups 1 (n=176), 2 (n=175), and 3 (n=175). Vaccination was well tolerated, with no differences in reactogenicity between the three age groups, and no serious adverse events, deaths, or withdrawals due to an adverse event. Local reactions mainly consisted of mild injection site pain in 46 (26%) of 176 participants in group 1, 61 (35%) of 175 in group 2, and 39 (22%) of 175 in group 3 after dose 1; and 39 (22%) of 176 in group 1, 43 of 175 (25%) in group 2, and 14 of 175 (8%) in group 3 after dose 2; there were no cases of severe pain and few reports of other local reactions. After dose 1, the most frequent solicited systemic adverse event was mild-to-moderate fever, reported in eight (5%) of 176 participants in group 1, 17 (10%) of 175 in group 2, and 22 (13%) of 175 in group 3. No case of severe fever was reported, and rates of all fever were all 4% or less after dose 2. Geometric mean titres (GMTs) of microneutralisation antibodies at day 56 in groups 1 (138·8 [95% CI 111·0-173·6]), 2 (137·4 [99·1-167·5]), and 3 (197·6 [176·4-221·4]) were similar to titres in vaccinated adults (160·1 [135·8-188·8]) and with BEI reference serum samples (103·3 [50·3-202·1]). Similar results were obtained using the plaque reduction neutralisation test (PRNT), in which 166 (95%) of 175 participants in group 1, 165 (98%) of 168 in group 2, and 169 (98%) of 172 in group 3 seroconverted at day 56. The GMT ratio of PRNT titres in children and adults was 1·76 (95% CI 1·32-2·33), indicating a superior response in children compared with adults. INTERPRETATION: BBV152 was well tolerated in children aged 2-18 years, and induced higher neutralising antibody responses than those observed in adults, in whom the efficacy (ie, the prevention or decrease in the severity of COVID-19 infection) has been demonstrated. FUNDING: Bharat Biotech International.


Subject(s)
COVID-19 , Viral Vaccines , Adolescent , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Child , Child, Preschool , Double-Blind Method , Female , Humans , Immunogenicity, Vaccine , Male , Pain , SARS-CoV-2 , Vaccines, Inactivated
7.
Lancet ; 398(10317): 2173-2184, 2021 12 11.
Article in English | MEDLINE | ID: covidwho-1586227

ABSTRACT

BACKGROUND: We report the clinical efficacy against COVID-19 infection of BBV152, a whole virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) in Indian adults. METHODS: We did a randomised, double-blind, placebo-controlled, multicentre, phase 3 clinical trial in 25 Indian hospitals or medical clinics to evaluate the efficacy, safety, and immunological lot consistency of BBV152. Adults (age ≥18 years) who were healthy or had stable chronic medical conditions (not an immunocompromising condition or requiring treatment with immunosuppressive therapy) were randomised 1:1 with a computer-generated randomisation scheme (stratified for the presence or absence of chronic conditions) to receive two intramuscular doses of vaccine or placebo administered 4 weeks apart. Participants, investigators, study coordinators, study-related personnel, the sponsor, and nurses who administered the vaccines were masked to treatment group allocation; an unmasked contract research organisation and a masked expert adjudication panel assessed outcomes. The primary outcome was the efficacy of the BBV152 vaccine in preventing a first occurrence of laboratory-confirmed (RT-PCR-positive) symptomatic COVID-19 (any severity), occurring at least 14 days after the second dose in the per-protocol population. We also assessed safety and reactogenicity throughout the duration of the study in all participants who had received at least one dose of vaccine or placebo. This report contains interim results (data cutoff May 17, 2021) regarding immunogenicity and safety outcomes (captured on days 0 to 56) and efficacy results with a median of 99 days for the study population. The trial was registered on the Indian Clinical Trials Registry India, CTRI/2020/11/028976, and ClinicalTrials.gov, NCT04641481 (active, not recruiting). FINDINGS: Between Nov 16, 2020, and Jan 7, 2021, we recruited 25 798 participants who were randomly assigned to receive BBV152 or placebo; 24 419 received two doses of BBV152 (n=12 221) or placebo (n=12 198). Efficacy analysis was dependent on having 130 cases of symptomatic COVID-19, which occurred when 16 973 initially seronegative participants had at least 14 days follow-up after the second dose. 24 (0·3%) cases occurred among 8471 vaccine recipients and 106 (1·2%) among 8502 placebo recipients, giving an overall estimated vaccine efficacy of 77·8% (95% CI 65·2-86·4). In the safety population (n=25 753), 5959 adverse events occurred in 3194 participants. BBV152 was well tolerated; the same proportion of participants reported adverse events in the vaccine group (1597 [12·4%] of 12 879) and placebo group (1597 [12·4%] of 12 874), with no clinically significant differences in the distributions of solicited, unsolicited, or serious adverse events between the groups, and no cases of anaphylaxis or vaccine-related deaths. INTERPRETATION: BBV152 was highly efficacious against laboratory-confirmed symptomatic COVID-19 disease in adults. Vaccination was well tolerated with no safety concerns raised in this interim analysis. FUNDING: Bharat Biotech International and Indian Council of Medical Research.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Vaccine Efficacy , Vaccines, Inactivated/immunology , Adjuvants, Immunologic , Adult , COVID-19 Nucleic Acid Testing , Double-Blind Method , Female , Humans , India , Male
8.
Lancet Infect Dis ; 21(5): 637-646, 2021 05.
Article in English | MEDLINE | ID: covidwho-1510469

ABSTRACT

BACKGROUND: To mitigate the effects of COVID-19, a vaccine is urgently needed. BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) or alum (Algel). METHODS: We did a double-blind, multicentre, randomised, controlled phase 1 trial to assess the safety and immunogenicity of BBV152 at 11 hospitals across India. Healthy adults aged 18-55 years who were deemed healthy by the investigator were eligible. Individuals with positive SARS-CoV-2 nucleic acid and/or serology tests were excluded. Participants were randomly assigned to receive either one of three vaccine formulations (3 µg with Algel-IMDG, 6 µg with Algel-IMDG, or 6 µg with Algel) or an Algel only control vaccine group. Block randomisation was done with a web response platform. Participants and investigators were masked to treatment group allocation. Two intramuscular doses of vaccines were administered on day 0 (the day of randomisation) and day 14. Primary outcomes were solicited local and systemic reactogenicity events at 2 h and 7 days after vaccination and throughout the full study duration, including serious adverse events. Secondary outcome was seroconversion (at least four-fold increase from baseline) based on wild-type virus neutralisation. Cell-mediated responses were evaluated by intracellular staining and ELISpot. The trial is registered at ClinicalTrials.gov (NCT04471519). FINDINGS: Between July 13 and 30, 2020, 827 participants were screened, of whom 375 were enrolled. Among the enrolled participants, 100 each were randomly assigned to the three vaccine groups, and 75 were randomly assigned to the control group (Algel only). After both doses, solicited local and systemic adverse reactions were reported by 17 (17%; 95% CI 10·5-26·1) participants in the 3 µg with Algel-IMDG group, 21 (21%; 13·8-30·5) in the 6 µg with Algel-IMDG group, 14 (14%; 8·1-22·7) in the 6 µg with Algel group, and ten (10%; 6·9-23·6) in the Algel-only group. The most common solicited adverse events were injection site pain (17 [5%] of 375 participants), headache (13 [3%]), fatigue (11 [3%]), fever (nine [2%]), and nausea or vomiting (seven [2%]). All solicited adverse events were mild (43 [69%] of 62) or moderate (19 [31%]) and were more frequent after the first dose. One serious adverse event of viral pneumonitis was reported in the 6 µg with Algel group, unrelated to the vaccine. Seroconversion rates (%) were 87·9, 91·9, and 82·8 in the 3 µg with Algel-IMDG, 6 µg with Algel-IMDG, and 6 µg with Algel groups, respectively. CD4+ and CD8+ T-cell responses were detected in a subset of 16 participants from both Algel-IMDG groups. INTERPRETATION: BBV152 led to tolerable safety outcomes and enhanced immune responses. Both Algel-IMDG formulations were selected for phase 2 immunogenicity trials. Further efficacy trials are warranted. FUNDING: Bharat Biotech International.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/adverse effects , Double-Blind Method , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Vaccination , Vaccines, Inactivated/immunology , Young Adult
9.
Lancet Infect Dis ; 21(7): 950-961, 2021 07.
Article in English | MEDLINE | ID: covidwho-1290388

ABSTRACT

BACKGROUND: BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine (3 µg or 6 µg) formulated with a toll-like receptor 7/8 agonist molecule (IMDG) adsorbed to alum (Algel). We previously reported findings from a double-blind, multicentre, randomised, controlled phase 1 trial on the safety and immunogenicity of three different formulations of BBV152 (3 µg with Algel-IMDG, 6 µg with Algel-IMDG, or 6 µg with Algel) and one Algel-only control (no antigen), with the first dose administered on day 0 and the second dose on day 14. The 3 µg and 6 µg with Algel-IMDG formulations were selected for this phase 2 study. Herein, we report interim findings of the phase 2 trial on the immunogenicity and safety of BBV152, with the first dose administered on day 0 and the second dose on day 28. METHODS: We did a double-blind, randomised, multicentre, phase 2 clinical trial to evaluate the immunogenicity and safety of BBV152 in healthy adults and adolescents (aged 12-65 years) at nine hospitals in India. Participants with positive SARS-CoV-2 nucleic acid and serology tests were excluded. Participants were randomly assigned (1:1) to receive either 3 µg with Algel-IMDG or 6 µg with Algel-IMDG. Block randomisation was done by use of an interactive web response system. Participants, investigators, study coordinators, study-related personnel, and the sponsor were masked to treatment group allocation. Two intramuscular doses of vaccine were administered on day 0 and day 28. The primary outcome was SARS-CoV-2 wild-type neutralising antibody titres and seroconversion rates (defined as a post-vaccination titre that was at least four-fold higher than the baseline titre) at 4 weeks after the second dose (day 56), measured by use of the plaque-reduction neutralisation test (PRNT50) and the microneutralisation test (MNT50). The primary outcome was assessed in all participants who had received both doses of the vaccine. Cell-mediated responses were a secondary outcome and were assessed by T-helper-1 (Th1)/Th2 profiling at 2 weeks after the second dose (day 42). Safety was assessed in all participants who received at least one dose of the vaccine. In addition, we report immunogenicity results from a follow-up blood draw collected from phase 1 trial participants at 3 months after they received the second dose (day 104). This trial is registered at ClinicalTrials.gov, NCT04471519. FINDINGS: Between Sept 5 and 12, 2020, 921 participants were screened, of whom 380 were enrolled and randomly assigned to the 3 µg with Algel-IMDG group (n=190) or 6 µg with Algel-IMDG group (n=190). Geometric mean titres (GMTs; PRNT50) at day 56 were significantly higher in the 6 µg with Algel-IMDG group (197·0 [95% CI 155·6-249·4]) than the 3 µg with Algel-IMDG group (100·9 [74·1-137·4]; p=0·0041). Seroconversion based on PRNT50 at day 56 was reported in 171 (92·9% [95% CI 88·2-96·2] of 184 participants in the 3 µg with Algel-IMDG group and 174 (98·3% [95·1-99·6]) of 177 participants in the 6 µg with Algel-IMDG group. GMTs (MNT50) at day 56 were 92·5 (95% CI 77·7-110·2) in the 3 µg with Algel-IMDG group and 160·1 (135·8-188·8) in the 6 µg with Algel-IMDG group. Seroconversion based on MNT50 at day 56 was reported in 162 (88·0% [95% CI 82·4-92·3]) of 184 participants in the 3 µg with Algel-IMDG group and 171 (96·6% [92·8-98·8]) of 177 participants in the 6 µg with Algel-IMDG group. The 3 µg with Algel-IMDG and 6 µg with Algel-IMDG formulations elicited T-cell responses that were biased to a Th1 phenotype at day 42. No significant difference in the proportion of participants who had a solicited local or systemic adverse reaction in the 3 µg with Algel-IMDG group (38 [20·0%; 95% CI 14·7-26·5] of 190) and the 6 µg with Algel-IMDG group (40 [21·1%; 15·5-27·5] of 190) was observed on days 0-7 and days 28-35; no serious adverse events were reported in the study. From the phase 1 trial, 3-month post-second-dose GMTs (MNT50) were 39·9 (95% CI 32·0-49·9) in the 3µg with Algel-IMDG group, 69·5 (53·7-89·9) in the 6 µg with Algel-IMDG group, 53·3 (40·1-71·0) in the 6 µg with Algel group, and 20·7 (14·5-29·5) in the Algel alone group. INTERPRETATION: In the phase 1 trial, BBV152 induced high neutralising antibody responses that remained elevated in all participants at 3 months after the second vaccination. In the phase 2 trial, BBV152 showed better reactogenicity and safety outcomes, and enhanced humoral and cell-mediated immune responses compared with the phase 1 trial. The 6 µg with Algel-IMDG formulation has been selected for the phase 3 efficacy trial. FUNDING: Bharat Biotech International. TRANSLATION: For the Hindi translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/immunology , Child , Double-Blind Method , Drug-Related Side Effects and Adverse Reactions/immunology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Th1 Cells/immunology , Th2 Cells/immunology , Vaccination/adverse effects , Young Adult
11.
iScience ; 24(4): 102298, 2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1126886

ABSTRACT

We report the development and evaluation of safety and immunogenicity of a whole virion inactivated (WVI) SARS-CoV-2 vaccine (BBV152), adjuvanted with aluminum hydroxide gel (Algel), or TLR7/8 agonist chemisorbed Algel. We used a well-characterized SARS-CoV-2 strain and an established Vero cell platform to produce large-scale GMP-grade highly purified inactivated antigen. Product development and manufacturing process were carried out in a BSL-3 facility. Immunogenicity and safety were determined at two antigen concentrations (3µg and 6µg), with two different adjuvants, in mice, rats, and rabbits. Our results show that BBV152 vaccine formulations generated significantly high antigen-binding and neutralizing antibody titers (NAb), at both concentrations, in all three species with excellent safety profiles. The inactivated vaccine formulation contains TLR7/8 agonist adjuvant-induced Th1-biased antibody responses with elevated IgG2a/IgG1 ratio and increased levels of SARS-CoV-2-specific IFN-γ+ CD4+ T lymphocyte response. Our results support further development for phase I/II clinical trials in humans.

12.
Nat Commun ; 12(1): 1386, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1114712

ABSTRACT

The COVID-19 pandemic is a global health crisis that poses a great challenge to the public health system of affected countries. Safe and effective vaccines are needed to overcome this crisis. Here, we develop and assess the protective efficacy and immunogenicity of an inactivated SARS-CoV-2 vaccine in rhesus macaques. Twenty macaques were divided into four groups of five animals each. One group was administered a placebo, while three groups were immunized with three different vaccine candidates of BBV152 at 0 and 14 days. All the macaques were challenged with SARS-CoV-2 fourteen days after the second dose. The protective response was observed with increasing SARS-CoV-2 specific IgG and neutralizing antibody titers from 3rd-week post-immunization. Viral clearance was observed from bronchoalveolar lavage fluid, nasal swab, throat swab and lung tissues at 7 days post-infection in the vaccinated groups. No evidence of pneumonia was observed by histopathological examination in vaccinated groups, unlike the placebo group which exhibited interstitial pneumonia and localization of viral antigen in the alveolar epithelium and macrophages by immunohistochemistry. This vaccine candidate BBV152 has completed Phase I/II (NCT04471519) clinical trials in India and is presently in phase III, data of this study substantiates the immunogenicity and protective efficacy of the vaccine candidates.


Subject(s)
COVID-19 Vaccines/therapeutic use , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Female , Immunohistochemistry , Lymphocytes/immunology , Lymphocytes/metabolism , Macaca mulatta , Male , Pneumonia/immunology , Pneumonia/metabolism
13.
iScience ; 24(2): 102054, 2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1014569

ABSTRACT

The availability of a safe and effective vaccine would be the eventual measure to deal with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) threat. Here, we have assessed the immunogenicity and protective efficacy of inactivated SARS-CoV-2 vaccine candidates BBV152A, BBV152B, and BBV152C in Syrian hamsters. Three dose vaccination regimes with vaccine candidates induced significant titers of SARS-CoV-2-specific IgG and neutralizing antibodies. BBV152A and BBV152B vaccine candidates remarkably generated a quick and robust immune response. Post-SARS-CoV-2 infection, vaccinated hamsters did not show any histopathological changes in the lungs. The protection of the hamster was evident by the rapid clearance of the virus from lower respiratory tract, reduced virus load in upper respiratory tract, absence of lung pathology, and robust humoral immune response. These findings confirm the immunogenic potential of the vaccine candidates and further protection of hamsters challenged with SARS-CoV-2. Of the three candidates, BBV152A showed the better response.

14.
Sci Rep ; 10(1): 16574, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834902

ABSTRACT

In this study, we characterize the impacts of COVID-19 on air pollution using NO2 and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO2 reduction during the lockdown (March 25-May 3rd, 2020) compared to the pre-lockdown (January 1st-March 24th, 2020) period. Also, a 19% reduction in NO2 was observed during the 2020-lockdown as compared to the same period during 2019. The top cities where NO2 reduction occurred were New Delhi (61.74%), Delhi (60.37%), Bangalore (48.25%), Ahmedabad (46.20%), Nagpur (46.13%), Gandhinagar (45.64) and Mumbai (43.08%) with less reduction in coastal cities. The temporal analysis revealed a progressive decrease in NO2 for all seven cities during the 2020 lockdown period. Results also suggested spatial differences, i.e., as the distance from the city center increased, the NO2 levels decreased exponentially. In contrast, to the decreased NO2 observed for most of the cities, we observed an increase in NO2 for cities in Northeast India during the 2020 lockdown period and attribute it to vegetation fires. The NO2 temporal patterns matched the AOD signal; however, the correlations were poor. Overall, our results highlight COVID-19 impacts on NO2, and the results can inform pollution mitigation efforts across different cities of India.

SELECTION OF CITATIONS
SEARCH DETAIL